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ON A CLASS OF EXACT SOLUTIONS OF A NON-AXISYMMETRIC CONTACT PROBLEM 

FOR AN INHOMOGENEOUS ELASTIC HALF-SPACE* 

A.N. BORODACHEV 

A non-axisymmetric mixed boundary-value problem is considered concerning 
the pressure (in the absence of friction and adhesion forces) of a stiff 

circular-planform stamp with a base of aribitrary shape on an 

inhomogeneous elastichalf-space. The shear modulus of the half-space 
material is constant while Poisson's ratio is an arbitrary piecewise- 
continuous function of the depth. By using the theory of dual integral 

equations associated with the generalized Hankel integral operator, the 
problem is reduced to a sequence of one-dimensional Fredholm integral 
equations of the second kind. 

It is shown that the integral equations obtained allow exact 

solutions to be constructed for periodic law of variation of the 

half-space material elastic properties with depth. The solution of a 

non-axisymmetric problem regarding the eccentric impression of a stamp 
with a flat base is presented as a example, on the basis of which the 
influence of inhomogeneity of the elastic material on the magnitude of 
the stamp displacement parameters is investigated. An asymptotic 

analysis is performed for the solution in the case when the elastic 
characteristics of the material become rapidly oscillating functions. 
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Some problems for inhomogeneous materials with variable Poisson's 
ratio where investigated earlier /l-4/. 

1. We consider the problem of the pressure of a stiff stamp on an inhomogeneous elastic 
half-space Be3 = {x0: z8> 01, where x0 = (x1, 51, %) is a point in space fi'. The shear modulus 
of the half-space material is constant (p =const> 0) while Poisson's ratio t' = ~(5~) is an 
arbitrary function satisfying the standard conditions - I< v(zg)<li, /5/. The elastic. 
modulus of the material E = 2p (1+-V) is here a positive function of the depth. 

The vector equilibrium equation in displacements for the model of elastic material in- 
homogeneity under consideration has the form (no bulk forces) 

Au(x") + V [n (.x8) V-u (x0)1 = 0, x0 E R+a (W 
u = (u,, us, us), q = (1 - 2vy 

where A and V are, respectively, the Laplace operator and the gradient in RS. 
We will write the boundary conditions and conditions at infinity 

oaa (x, 0) = 0 

o3s (x, 0) = 0, xG 52 

% (x, 0) = 6 -r- s,% + se% - I(x), x E Q 

1Li (x0) +o, U,j (X”) + 0 as \ X0 1 --f 00 

as well as equilibrium equations for the stamp 

P=-&,(x,O)dx 
o 

M~=-~~fdx,O)x&x, M,= --~SU~(~,O~~~~~ 
P PI 

Here x =(rr,~~), p is the contact area, Uij are stress tensor components, 6, El, es are 
previously unknown displacement parameters for the stamp as a solid body, f(x) is a given 
function describing the shape of the stamp base, and P,M, and M, are the principal vector 
and the principal moments of the forces applied to the stamp. In (1.2) and (1.3) and every- 
where later the subscripts i,j take the values 1, 2, 3, and the subscript a only 1 and 2. 
Summation is not performed over repeated subscripts. 

The general solution of (1.1) has the form 

u = B -t_ Vb, B = (B,, R,, B,) 
AB = 0, Ab = --'/,yV.B, y = 11 - v(~~)l-r 

(1.5) 

In the case of a homogeneous material (1.5) reduce to the Freiberger solution /5i,,which 
is a modification of the well-known Papkovich-Neuber representation. The representation 11.5) 
remains valid even in the more general case when v = v(x'). Other forms of the general sol- 
ution of (1.1) are indicated in /4, 6/. 

The stress tensor components are expressed in terms of the functions B and b by the 
relationships (6,, is the Kronecker delta, and the comma before the subscript denotes dif- 
ferentiation with respect to the appropriate variable x,) 

P-'Ulj = 6,jPyV.B + B,*j $- Bj,, + Zb,ij (1.6) 

Without loss of generality, it is possible to set B, = B, =0 when there are no shear 
stresses (see (1.2)) on the half-space boundary. 
relationships 

AS a result of such a simplification, 
(1.5) and (1.6) take the form 

mu = b.,, ~3 = B + b,, 
AB = 0, A6 = --‘feyB,, 

F’%s = 2b,,,t ~-=%a = (B i- Zb,g),, 

F%a = M,, -I- .%,a,, 11--I%s = [(2 - y) yB + 2b,,l,, 

(1.7) 

(1.8) 

fi.9) 

where the notation B =B, is used. 

2, We introduce the two-dimensional Fourier integral transform operator in the variables 
Zl and xs 

F{g,(x='))(k, .~J=:~(k,.z~)-- fi ~(x*)e"=dx, k =fk,,&) (2.1) 
-m 
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Applying it to relationship (1.8) and solving the ordinary differential equations obtained 
here, taking the conditions (1.3) at infinity into account, we find (C(k) and D(k) are 
arbitrary functions) 

APPlYin 
relationships 

BF (k, ,t,) = C (k) d-xx* 

bF (k, zg) = ID (k) - ‘/*C (k)m(r,)f e-b+ -1/4C (k) I (k, r&&a 
m 

(2.1) 

the Fourier transform to (1.7) and (1.9) and substituting (2.2) into the 
obtained, in particular, we obtain 

kg'(k, 23) y iC (k) -- kD (k) -+ V,kC (k) m (s,)] e-R-kg - (2.3) 
‘/,kC (k) 1 (k, x3) ek2* 

u&'(k,x,) = ipk&” (k,q,) 
assF (k, sj) = -pkh- (k, 2%) 

A* (k, q,) = 'i&C (k) I (k, r,) ek*-& 
[2kD (k) - C (k) - l/,kC (k) m (xa)l e-t=* 

The first boundary condition (1.2) will be satisfied if we set &R(k)= IZ-- klfk,O)1 c(k). 
Here (2.3) take the following form on the boundary of the half space R+' 

ngr (k,O) -= _ "!.c' {k), u,,~ (k, 0) := 0 

ua3F (k, 0) -= -pk?S (k) C(k), I, (k) == l(k, 0) 

(2.4) 

Eliminating the function C fron the first and third relationships in (2.41, we set up a 
connection between the Fourier transforms of the normal stresses and the normal displacements 
at points of the boundary of the half-space fi+3 

uS3F (k. 0) =:= -2pkX (k) usF (k. 0) (2.5) 

We introduce polar coordinates in the plane 2% -0 by the relationships 3+ = r cos cp, 
-zz = r sin 'p and we consider the case when the contact area has the shape of a circle of 
radius a: 9 = {r, ‘p: 0 < r < a, --x < “p < 3%). We will represent the functions o(x) = -033 (x, 0) 
and U(X) = u,(x,O) by complex Fourier series 

after which we obtain a connection between the functions u, (r) and o;,(r) by changing to 
polar coordinates in (2.5) and integrating with respect to the angular coordinate (the notation 
for the generalized Hankel integral operator /7/ is used) 

Inverting the relationship (2.71, we obtain 

where obviously, 

on 0") = SN/zzo (y, (P))(r) (2.9) 

Changing to polar coordinates in the second and third boundary conditions of (1.2) and 
substituting the representation (2.6) therein, taking relationships (2.8) and (2.9) into 
acount, we arrive at a system of dual integral equations in the auxiliary functions V%?(P) 
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(2.10) 

Substituting the representation 

y,, (p) = @n-l'* (1 - Yo)-~SN/S,-~/, {~% bd} (P) (2.11) 

into (2.10), we find that g,,(z)= 0 for a<s while the functions .% (5) satisfy a 
Fredholm integral equation of the second kind 

g, (4 + x”. a 1 g, (S) S'l* ds f G (t) 1,.-‘&t) IN-‘/, (St) t dt = 

Cl .‘o 

1 d : 
-- 
$’ dz s 

f,, (r) rN+l dr 

o (5% - ,a)“% 

(2.12) 

in the segement O<x<a. 
The functions a,(r) governing the contact pressure distribution under the stamp are 

expressed in terms of the auxiliary functions g,,(x) by using the quadratures 

Introducing the complex principal moment M = M, + iM, and changing to polar coordinates 
in the stamp equilibrium Eqs.tl.41, we obtain 

f’=2x~o,(r)rdr=4p(l-~J~~g~(~)d~ 
II 0 

M = 2n[ u_~ (r)@dr = 8p (1 - v,,)-~~ g_, (x)x dr 
0 0 

(2.14) 

Therefore, the solution of the contact problem for a circular stamp with arbitrary base 
shape reduces to constructing an infinite sequence of functions g,(x) satisfying Fredholm 
integral equations of the second kind (2.12) and the stamp equilibrium Eqs.(2.14). The 
mentioned sequence ordinarily contains just several non-zero terms for stamp base shapes of 
practical interest. 

We will later limit 
impression of a circular 

ourselves to considering the non-axisymmetric problem of the eccentric 
stamp with a flat base. In this case f(x) = 0 and 

f0 (r) = 6, fil (9 = ‘I2 (el 3 ie,) r (2.15) 

f, (r) = 0 for 1 n I> 1 

Substituting the last relationship of (2.15) into (2.12) we conclude that g,(s) =O for 
Inl>i so that in this case only the functions 670 (s) and g*,(r) are non-zero. 

Changing to new auxiliary functions 

y0 (m) = 070 (& Yil (2) = (a1 + iaJ1gil (5) (2.16) 

in the remaining integral equations of (2.12), we obtain 

y,(r) + iK,(r, s) y,(s)ds = 1, O<l<a (2.17) 
0 
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from which it follows, in particular, that the functions y,t,(z) are equal to one another, 
unlike g+, (3). 

Substituting (2.16) into (2.14), we arrive at the following formulas connecting the stamp 
displacement parameters with the external load 

6 = zeY*-‘P, El = oY,-'M,, E? = OY,‘,~~i, (2.15) 

@ == (Spt)-1 (1 - v,), Y, = i y,(r) dx, Y, = i y, (t) rdr 
e a 

The contact pressure under the stamp takes the following 
sideration: 

form in the case under con- 

(2.19). 

3. The known exact solutions of spatial contact problems for an inhomogeneous half-space 
18-121 refer to the case when the elastic characteristics of the half-space material are 
monotonic functions of the depth. The inhomogeneity model under consideration in this paper 
enables us to obtain an analytic solution of the contact problem for a periodic law of 
variation of the elastic characteristics. 

For example, let 

Y (%f = b, -I- 

so that Poisson's ratio and the elastic modulus 
period T = 2nb,-l. Here 

b, cos b3x, (3.1) 

are periodic functions of the depth with 

h+$-' fi" = A$ (3.2) 

and the kernels of the integral Eqs.(2.17) are evaluated in elementary functions, where 

and the expression for 4 h 4 corresponds to the replacement of cash by sinh in (3.3). 
Taking account of (3.3) we write the integral equation in the function F.(z)i as 

and in particular 

Yo@)=l - bht~~~ f y, (s) ch hs ds - bh ch hx [ y, (s) e-&s ds 
0 x 

y, (0) = i - bh i y. (s) e-ha ds 
0 

(3.4) 

(3.5) 

Differentiating (3.4) with respect to x we obtain 

Yo' (0) = 0 (3.6) 

Differentiating (3.4) twice with respect to 3c, we find that the solution of the integral 
Eq.(3.4) satisfies a second-order ordinary differential equation 

y," (zf - plya = -IL% (3.7) 

as well as the initial conditions (3.5) and (3.6). as has been established. 
The solution of the Cauchy problem (3.5)-(3.7) has the form 

In an analogous manner we establish that the function y,(x), and therefore, also Y-1 (+)r 
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are determined by the formula 

(3.9) 

Substituting relationships (3.8) and (3.9) into (2.181, we obtain the following rep- 
resentations for the stamp displacement parameters: 

6 = 6' [1 + f (b, x)1, zzct 5 c.bP II -t- g (b, x)?, cc = k 2 (3.10) 

E=b 
x(x~g--3h)+(x~+3h)tllx 
x(xag+ 3qh)+(x3-- 361r)th x 

x = pa = l/,ab,, g - (1 + b)‘lz, h = x i- g 

where 6" and a," are the stamp displacement parameters for a homogeneous half-space with 
Poisson's ratio v =v0. Therefore, the quantities c and 8, which depend on the two dimen- 
sionless parameters b ana x characterize the influence of the elastic material inbomoge~eity 
on the stamp displacement parameters. It can be seen that i=E==O for b =O or for 
x=0 (these values correspond to a homogeneous material). 

Let us set up the domains of allowable values of the parameters b and x. Since the 
function cos b9x3 in (3.1) is even, without loss of generality we can set b,>O. Therefore, 
the domain of allowable values of the parameter x is the semi-axis [O, -too). The range of 
variation of the parameter b is determined by the interval of allowable values of the function 
v 6%). In particular, if O<v (xa)<V2 (these constraints hold for the majority of natural 
and structuxal materials), then 

(2% - Q(3 - ZV")_" < b <V" (2 - Y0)-r 

In this case the domain of allowable values of the parameter b is the segment I-*/a,Vsl. 
In general, the range of variation of the parameter b can be broader since materials with 
negative value of Poisson's ratio a0 exist 1131. 

It is of particular interest to investigate the behaviour of the stamp displacement 
parameters as x-p gc (which is equivalent to the case b,-+ 00 for a fixed value of a) 
when the functions 2:(X8) and E (sa) become rapidly oscillating and their period T-+0. 
Making the mentioned passage to the limit in (3.101, we find 

lime=: 6“(1 + b), lim ecr =sa"(P + &) 
X'rn tcw 

(3.11) 

where the relations c(B, M) = e (b, co) = b were taken into account. 
We introduce into the consideration a homogeneous elastic half-space with constant shear 

modulus p and Poisson's ratio Y * by denoting the appropriate values of the stamp displacement 
parameters by 6* and sa* (these values are obtained from the expression for 6" and eB by 
replacing VO by Y*), If we set v* =vO - b(l -v,), then on the basis of (3.11) we obtain 

lim6==S*, limsa=sa* 
X-nn 

(3.12) 
X--M 

Therefore, as the parameter x increases, the stamp displacements on an inhom~e~eous 
half-space with Poisson's ratio (3.1) tend to the corresponding values for a homogeneous half- 
space with Poisson's ratio Y*. The quantity v* can be expressed as follows in terms of the 
mean value of the function y(r,) in the period 

from which it is seen, in particular, that v* E [O, ‘/,I for 0 Q Y (x8)< Ve. 
The figure shows graphs of 5* =35 (solid lines) and E* =3E 

for fixed values of b* = 3b and against b* for fixed values of 1~. 
(dashes) against x 

I E 1 increase monotonically as x 
We note that 15 [ and 

increases and approach the limit value 
The graphs of S and E against b are almost linear: 

tb I quite rapidly. 
strictly linear relations are obtained 

for lC==OO when c = % =I 6. 

4. In conclusion, we mention a more general class of periodic models of elastic material 
inhoa~eneity for which it is possible to obtain analytic solutions of the non-axisymmetric 
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contact problem under consideration. 

r / 

Let (as before, I" = const) 

where ak and Hk are certain constants. For 
special case (apart from the notation). If 
cosine series governing the function y(zJ 
for k =I, 2,. . ., m), then 

km, 
ak cos - 

k=l k 
(4.1) 

m = 1 the law (3.1) is obtained from (4.1) as a 
(4.1) is considered as a segment of a Fourier 
in the interval 10, HI (in this case Hk = H 

For the law (4.1) 

G(t)= &-c&r 
k=l 

where the constants Gk and g k are expressed in terms of ak and Hk so that the kernel of the 
integral Eqs.(2.17) are represented by sums (containing m terms) of kernels of the type (3.3). 
The integral equations obtained here reduce to ordinary differential equations of order 2m 
that enable us to construct analytic solutions. The calculations associated with the 
realization of the approach mentioned become more awkward and are not presented here but a 
description of the method for solving equations of this kind can be found in /14, 15/. 
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CONTACT PROBLEMS FOR SYSTEMS OF ELASTIC HALF-PLANES" 

B.M. NULLER 

Static and stationary dynamic problems are considered for systems of N 
elastic isotropic half-planes attached by arbitrary sections of their 
boundaries. Outside the attached sections the half-planes are 
contiguous to stamps and flexible facings. The kinds of mixed boundary 
conditions, whose number can reach six, are given in each half-plane 
independently. In particular, the most important case of a plane N=2 
does not require the presence of specular symmetry of the types on 
opposite edges of slits, which provides the possibility of studying new 
classes of problems of the cutting, wedging, and debonding of 
inclusions. 

The procedure proposed for the solution enables the problems in 
question to be reduced, in a general formulation, to Hilbert-Riemann 
bounary-value problems on N-sheeted Riemann surfaces defined by 
bifurcation and the law of attachement of the sheets. If the problem of 
constructing the algebraic function of the Riemann surface obtained 
along its bifurcation is solved (for N= 2, i.e., for a hyperelliptic 
surface, this function is well-known for N<4 and it can obviously 
also be found in the general case), then the corresponding contact 
problem is solved by quadratures. Examples are considered. 

1. Let {Rh-}lN be a set of specimens of the complex plane z = 2 + iy; 
y>O}, k =I, 2, . . . . N", N+<N, is the upper elastic half-plane 

SI, = {z 6~ R,: 

N+ + 1, N+ + 2, . . ., N 
S1, = {z E R,: y < 0}, k = 

is the lower elastic half-plane, and Fr is the boundary of S,. Each 
k-th upper half-plane is contiguous to N,E [1,N_l,N-=N -N+, by some lower half-planes, 
Fki' C Fh and plb‘ C Fz are contact boundaries of the domains Sk and SI and coincide when 
RX and R, are superimposed l?rl' n &,, =l;l for Ifn. Let the elastic domain 

C,lll CEt, . . ., rsr?l, rp,r 
"be connected" in the sense that for any k and 1~ [1, N] 

SX u Sz u 
a chain of boundaries 

connecting the domains SI, and S1 exists: rr' is the union of 
over all N, values of l,FRy = 

rklr 
rr \r,', n is the shear modulus, v is Poisson's ratio, and p 

is the density of the material S. In the general case different kinds of fundamental or mixed 
boundary conditions P, for different k are formulated on r, 
ities allowable at the separation points is indicated; 

and the nature of the singular- 
stress field intensities satisfying 

the equilibrium and connectedness conditions of the domain S are given at infinity in each 
half-plane. The boundaries rs move with the identical constant subsonic velocity c>o 
relative to the fixed domains Sk. It is required to determine the elastic deformations of the 
domain S. 

In the case N = 2 certain fundamental problems for a homogeneous plane with slits are 
solved by quadratures for P, = P, and P,+ P, /l/, for a composite plane and for P, =P, 
121; mixed problems are solved in the same form just for P, = P, 
symmetric kinds of conditions on opposite edges of the slits. 

/3-6/, i.e., for specularly 


